Characterization and metabolic function of a peroxisomal sarcosine and pipecolate oxidase from Arabidopsis.

نویسندگان

  • Aymeric Goyer
  • Tanya L Johnson
  • Laura J Olsen
  • Eva Collakova
  • Yair Shachar-Hill
  • David Rhodes
  • Andrew D Hanson
چکیده

Sarcosine oxidase (SOX) is known as a peroxisomal enzyme in mammals and as a sarcosine-inducible enzyme in soil bacteria. Its presence in plants was unsuspected until the Arabidopsis genome was found to encode a protein (AtSOX) with approximately 33% sequence identity to mammalian and bacterial SOXs. When overexpressed in Escherichia coli, AtSOX enhanced growth on sarcosine as sole nitrogen source, showing that it has SOX activity in vivo, and the recombinant protein catalyzed the oxidation of sarcosine to glycine, formaldehyde, and H(2) O(2) in vitro. AtSOX also attacked other N-methyl amino acids and, like mammalian SOXs, catalyzed the oxidation of l-pipecolate to Delta(1)-piperideine-6-carboxylate. Like bacterial monomeric SOXs, AtSOX was active as a monomer, contained FAD covalently bound to a cysteine residue near the C terminus, and was not stimulated by tetrahydrofolate. Although AtSOX lacks a typical peroxisome-targeting signal, in vitro assays established that it is imported into peroxisomes. Quantitation of mRNA showed that AtSOX is expressed at a low level throughout the plant and is not sarcosine-inducible. Consistent with a low level of AtSOX expression, Arabidopsis plantlets slowly metabolized supplied [(14)C]sarcosine to glycine and serine. Gas chromatography-mass spectrometry analysis revealed low levels of pipecolate but almost no sarcosine in wild type Arabidopsis and showed that pipecolate but not sarcosine accumulated 6-fold when AtSOX expression was suppressed by RNA interference. Moreover, the pipecolate catabolite alpha-aminoadipate decreased 30-fold in RNA interference plants. These data indicate that pipecolate is the endogenous substrate for SOX in plants and that plants can utilize exogenous sarcosine opportunistically, sarcosine being a common soil metabolite.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

L-Pipecolic acid oxidase, a human enzyme essential for the degradation of L-pipecolic acid, is most similar to the monomeric sarcosine oxidases.

L-Pipecolic acid oxidase activity is deficient in patients with peroxisome biogenesis disorders (PBDs). Because its role, if any, in these disorders is unknown, we cloned the associated human gene and expressed its protein product. The cDNA was cloned with the use of a reverse genetics approach based on the amino acid sequence obtained from purified L-pipecolic acid oxidase from monkey. The com...

متن کامل

Identification of Intracellular Sources Responsible for Endogenous Reactive Oxygen Species Formation

The endogenous reactive oxygen species ("ROS") formation is associated with many pathologic states such as inflammatory diseases, neurodegenerative diseases, brain and heart ischemic injuries, cancer, and aging. The purpose of this study was to investigate the endogenous sources for "ROS" formation in intact isolated rat hepatocytes, in particular, peroxisomal oxidases, monoamine oxidase, xanth...

متن کامل

Succinate-mediated catabolite repression control on the production of glycine betaine catabolic enzymes in Pseudomonas aeruginosa PAO1 under low and elevated salinities.

Glycine betaine (GB) and its immediate precursors choline and carnitine, dimethylsulfonioacetate, dimethylsulfoniopropionate, ectoine and proline were effective osmoprotectants for Pseudomonas aeruginosa, but pipecolate, trehalose and sucrose had no osmoprotective effect. GB was accumulated stably or transiently when succinate or glucose, respectively, was used as a carbon and energy source. Th...

متن کامل

Identification of Intracellular Sources Responsible for Endogenous Reactive Oxygen Species Formation

The endogenous reactive oxygen species ("ROS") formation is associated with many pathologic states such as inflammatory diseases, neurodegenerative diseases, brain and heart ischemic injuries, cancer, and aging. The purpose of this study was to investigate the endogenous sources for "ROS" formation in intact isolated rat hepatocytes, in particular, peroxisomal oxidases, monoamine oxidase, xanth...

متن کامل

Peroxisomal Malfunction Caused by Mitochondrial Toxin 3-NP: Protective Role of Oxytocin

Peroxisomes are single membrane cell organelles with a diversity of metabolic functions. Here we studied the peroxisomal dysfunction and oxidative stress after 3-nitropropionic acid (3-NP) induced neurotoxicity and the possible protective effects of oxytocin. Adult male and female rats were subjected to Oxt and/or 3-NP treatment. The antioxidant enzymes, Superoxide dismutase (SOD) and Catalase ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 279 17  شماره 

صفحات  -

تاریخ انتشار 2004